Equilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli

Authors

  • Fatemeh Tabandeh Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran;
  • Gholamreza Ahmadian Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran;
  • Mohammad Ali Amoozegar Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
  • Reza Zadmard Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran;
  • Vida Tafakori Department of Cell and Molecular Sciences, School of Biological Science, Kharazmi University, Tehran, Iran
Abstract:

Background: Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods: In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cell surface, in the removal of Ca (II) from solution under different experimental conditions. The biosorption process was optimized using central composite design. In parallel, the kinetics of metal biosorption was studied, and the rate constants of different kinetic models were calculated. Results: Cadmium biosorption is followed by the second-order kinetics. Freundlich and Langmuir equations were used to analyze sorption data; characteristic parameters were determined for each adsorption isotherm. The biosorption process was optimized using the central composite design. The optimal cadmium sorption capacity (284.69 nmol/mg biomass) was obtained at 40°C (pH 8) and a biomass dosage of 10 mg. The influence of two elutants, EDTA and CaCl2, was also assessed on metal recovery. Approximately, 68.58% and 56.54% of the adsorbed cadmium were removed by EDTA and CaCl2 during desorption, respectively. The Fourier transform infrared spectrophotometer (FTIR) analysis indicated that carboxyl, amino, phosphoryl, thiol, and hydroxyl are the main chemical groups involved in the cadmium bioadsorption process. Conclusion: Results from this study implied that chemical adsorption on the heterogeneous surface of E. coli E and optimization of adsorption parameters provides a highly efficient bioadsorbent. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Equilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli

Background Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cel...

full text

Equilibrium Modeling and Kinetic Studies on the Adsorption of Basic Dye by a Low Cost Adsorbent

An agricultural waste and eco-friendly biosorbent i.e. rice husk has been used as a cheap adsorbentfor the removal of methylene blue dye from aqueous solutions. The physical properties of the developedadsorbent were characterized using FTIR. The study was realized using batch experiments. The effectsof contact time, pH, initial dye concentration, biosorbent dose and temperature were investigate...

full text

Adsorption of Malachite Green from Aqueous Solution using Activated Ntezi Clay: Optimization, Isotherm and Kinetic Studies

The adsorption of malachite green from aqueous solution using a local low cost adsorbent, acid activated Ntezi clay, was investigated. The low cost adsorbent was activated with different concentrations of sulphuric acid and the physicochemical properties of the adsorbent were determined and the structural properties were analyzed using XRF and XRD. The adsorption process was studied as a functi...

full text

Optimization of Acid Blue 113 Adsorption from Aqueous Solutions by Natural Bentonite Using Response Surface Model: Isotherm and Kinetic Study

Background & objectives: Dyes are one of the main environmental pollutants of textile industrial wastewater which are toxic, carcinogenic, mutagenic, and non-biodegradable. Therefore, in this study, Response Surface Methodology (RSM) was used to investigate the operational parameters and determine the optimum conditions for the removal of acid blue 113 in the presence of bentonite. Methods: The...

full text

Isotherm and Kinetic Studies on Adsorption of Pb, Zn and Cu by Kaolinite

The feasibility of kaolinite used as a low-cost adsorbent for the removal of Pb(II), Zn(II) and Cu(II) from aqueous solutions was investigated. During the removal process, batch technique was used, and the effects of heavy metal concentration and contact time on adsorption efficiency at pH of 4.5, under a constant temperature of 20?1 ?C were studied. The experimental results were analyzed using...

full text

Experimental design and response surface modeling for optimization of humic substances removal by activated carbon: A kinetic and isotherm study

The presence of humic acid (HA) in water treatment processes is very harmful and the cause of undesirable color, taste, and smell. Drinking water containing high concentrations of humic substances can be the cause of many health problems. Therefore, the removal of these compounds from water resources is a very important topic. In this research, response surface methodology (RSM) has been used t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 6

pages  380- 391

publication date 2017-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023